Features and applications
Characteristics of the MAX FIELD® COUPLING
  • Designed for hot and humid environment and the material is superior than the standard coupling of MAX DYNAMIC®
  • Torque ratings and torsional stiffness are higher than the standard coupling of MAX DYNAMIC®
  • Facility protection for twirl, twist, impact, and abrasion.
  • Very simple replacement and maintenance without any oil or grease.
  • Very simple replacement without the separation of motor or connector on the related line due to its simple structure.
  • Possible for the dissimilar connection and assembly with the same hub.
  • Polyurethne based for good water and chemical resistance.
  • Highest flexible elasticity on run.
  • Less noise
Apllication
  • AGITATORS
  • BLOWERS
  • COMPRESSORS
  • CONVEYORS
  • CRANES & HOISTS
  • ELEVATORS
  • FANS
  • GENERATORS
  • PUMPS
  • BREWERY & DISTILLING
  • FOOD INDUSTRY
  • LUMBER INDUSTRY
  • PULP & PAPER MILL
  • RUBBER INDUSTRY
  • STEEL INDUSTRY
  • TEXTILE INDUSTRY
  • AGGREGATE PROCESSING CEMENT
Specifications
Standard Type
MAX FIELD®
coupling no.
Tn
(Nm)
N Max.
(rpm)
Bore A B C L N Weight
D1 D2 min. max. min. max. kg
F-110 64 5,400 10 38 110 96 128 8 52 38 60 0.474
F-125 106 5,400 10 48 120 97 130 8 52 38 70 0.550
F-130 170 5,100 11 55 131 95 131 7 49 41 80 0.700
F-150 256 4,800 11 65 150 111 159 9 57 51 95 1.020
F-170 312 4,800 11 65 168 111 159 9 57 51 95 1.196
F-190 420 4,600 19 75 190 113 161 7 57 52 117 1.526
F-215 670 4,300 19 80 216 132 192 11 64 64 140 2.506
F-245 970 4,100 19 95 245 136 203 8 73 65 171 3.080
F-290 1,450 3,900 27 110 290 154 240 8 94 73 215 4.500
F-365 3,300 3,600 35 127 365 200 311 20 131 90 235 11.800
F-425 5,700 2,000 35 155 425 247 361 19 133 114 286 14.800
F-460 6,400 2,000 48 165 460 267 380 19 132 124 302 17.200
Spacer Type
MAX FIELD®
coupling no.
Tn
(Nm)
N Max.
(rpm)
Bore A B C L N Weight
D1 D2 min. max. min. max. kg
FS-110 64 4,300 10 38 110 180 213 41 137 38 60 0.764
FS-125 106 4,300 10 48 120 187 220 52 144 38 70 0.920
FS-130 170 4,200 11 55 131 179 214 49 132 41 80 1.130
FS-150 256 4,000 11 65 150 232 276 57 174 51 95 1.760
FS-170 312 4,000 11 65 168 232 276 57 174 51 95 1.940
FS-190 420 3,900 19 75 190 232 278 57 174 52 117 2.500
FS-215 670 3,800 19 80 216 248 309 57 181 64 140 4.100
FS-245 970 3,700 19 95 245 256 323 66 193 65 171 5.180
FS-290 1,450 3,600 27 110 290 312 401 72 255 73 215 8.540
FS-365 3,300 2,600 35 127 365 318 428 76 250 90 235 15.440
FS-425 5,700 1,800 35 155 425 318 478 68 250 114 286 19.320
FS-460 6,400 1,800 48 165 460 318 498 67 250 124 302 22.080
Taper-Lock Bushed Standard Type
MAX FIELD®
coupling no.
Tn
(Nm)
N Max.
(rpm)
Bore A B C L N Bush
No.
D1 D2 min. max. min. max.
F-110 64 5,400 10 38 110 96 96 42 50 22.3 60 1108
F-125 106 5,400 10 48 120 97 97 42 50 22.3 70 1108
F-130 170 5,100 11 50 131 98 108 36 56 25.4 80 1310
F-150 256 4,800 11 65 168 112 118 54 66 25.4 95 1610
F-170 312 4,800 11 65 168 112 118 54 66 25.4 95 1610
F-190 420 4,600 19 75 190 116 124 50 60 31.8 117 2012
F-215 670 4,300 19 80 216 134 157 45 68 44.5 170 2517
F-245 970 4,100 19 95 245 136 170 44 69 50.8 171 3020
F-290 1,450 3,900 27 110 290 152 188 40 87 50.8 215 3020
F-365 3,300 3,600 35 127 365 220 310 18 130 90.0 235 3535
F-425 5,700 2,000 35 155 425 247 335 44 132 101.6 286 4040
F-460 6,400 2,000 48 165 460 266 360 38 132 114.3 302 4545
Taper-Lock Bushed Spacer Type
MAX FIELD®
coupling no.
Tn
(Nm)
N Max.
(rpm)
Bore A B C L N Bush
No.
D1 D2 min. max. min. max.
FS-110 64 5,400 10 38 110 180 180 76 135 22.3 60 1108
FS-125 106 5,400 10 48 120 187 187 87 142 22.3 70 1108
FS-130 170 5,100 11 55 131 180 184 70 134 25.4 80 1310
FS-150 256 4,800 11 65 150 232 232 93 181 25.4 95 1610
FS-170 312 4,800 11 65 168 232 232 93 181 25.4 95 1610
FS-190 420 4,600, 19 75 190 233 240 87 176 31.8 117 2012
FS-215 670 4,300 19 80 216 248 262 90 173 44.5 140 2517
FS-245 970 4,100 19 95 245 256 278 86 176 50.8 171 3020
FS-290 1,450 3,900 27 110 290 312 347 131 245 50.8 215 3020
FS-365 3,300 3,600 35 127 365 318 428 44 250 90.0 235 3535
FS-425 5,700 2,000 35 155 425 318 453 44 250 101.6 286 4040
FS-460 6,400 2,000 48 165 460 318 478 38 250 114.3 302 4545
Choosing of appropriate couplings
  • 1. How to choose Type : Coupling type depends on the application and the opreating conditions.
    Please see the table on page 8 and then choose the most suitable couplings.
    (Notice: Positive engagement for lifting motion only)
  • 2. How to calculate the nominal torque Ta(Nm) of the driven machine. Ta = 9550 x kw/n
    (kW = driven machine, n = speed(min-1))
  • 3. How to determine the service factor(Sf) Please see the table in each catalogue.
    Please chech whether below.
    • if the driven machine is an internal combustion engine that has over 20% of the torque fluctuation, read page 10.
    • if the driving speed is nearly critical speed, please ask the person in charge.
    • if the ambient temperature is over 60 degrees Celsius, please ask the person in charge.
    • if the number of starts per hour is over 10 times, please ask the person in charge.
  • 4. How to calculate the equivalent torque Teq(Nm) Teq = Ta x (Sf + St)
    Ta = torque(Nm) of the driven machine, Sf = service factor, St = Temperature service factor (see no. 8 blelow)
  • 5. Be the nominal torque of the coupling(TN) bigger than Teq Please check dimensional drawings
    TN ≥ Teq
    TN = norminal torque of the coupling (refer to dimensional drawings)
  • 6. Checking of the selection Tmax = the maximal peak torque
    Tmax ≤ 2 x TN
  • 7. How to check the bores If the diameters of the shaft are known, please check coincident bores are available if possible.
    When the couplings need bore and keyway, please be advised the precise dimensions and tolerances.
Alignment
Maximum Misalignment-mm/inch
Coupling Size 110 125 130 150 170 190 215 245 290 365 425 460
△ Ka max(mm)Angular 4.2 4.9 5.6 6.6 6.6 6.1 7.3 9 11.2 8.2 10 9.51.8º
△ Kr max(mm)Radial 1.6 1.6 1.6 1.6 1.6 2.4 2.4 2.4 2.4 3.2 3.2 3.2
△ Ka max(in)Angluar 0.165 0.193 0.22 0.26 0.026 0.24 0.287 0.354 0.441 0.323 0.394 0.3741.8º
△ Kr max(in)Radial 0.063 0.063 0.063 0.063 0.063 0.095 0.095 0.095 0.095 0.126 0.126 0.126
STEP 1.
STEP 2.
STEP 3.
Alignment
Measure each misalignment value and calculate the ratio of this value by using the maximum indicated value.
The sum of these ratios must be less than 1:

dr/△ r + dr/△ α < 1
  • dr = measured radial misalignment value
  • △ r = max.radial misalignment value
  • d α = measured angular misalignment value
  • △ α = max. angular misalignment value

Correct alignment if this sum is greater than 1.
Size F-110 F-125 F-130 F-150 F-170 F-190 F-215 F-245 F-290 F-365 F-425 F-460
(a-b)mm 4.2 4.9 5.6 6.6 6.6 6.1 7.3 9 11.2 8.2 10 9.5
△ r 1.6 1.6 1.6 1.6 1.6 2.4 2.4 2.4 2.4 3.2 3.2 3.2
Service Factors
Service Factors chart
Load Conditions Service Factors
Continuous driving Loads vary only slightly 1
Applied torque varies during operation 1.5
Applied torque varies during operation, 'stop' and 'go' cycles are encountered often. 2
Small shock and radical torque variations are applied. 2.5
Heavy shock or normal reversing drives are loaded 3
Reversing torque load doesn't always imply reversal of roatation ask person in charge
Service(Safety) Factor for each running part
General Applications Service Factor Industrial Applications Service Factor
AGITATORS 1.5 - 2.0 Aggregate Processing Cement 2.0 - 3.0
BLOWERS 1.0 - 1.5 Bewery & Distilling 1.0 - 2.0
COMPRESSORS 1.0 - 1.5 Food Industry 1.0 - 2.0
CONVEYERS 1.5 - 3.0 Lumber Industry 1.5 - 2.0
CRANES & HOISTS 2.0 - 2.5 Power Industry 1.5 - 2.5
ELEVATORS 2.0 - 2.5 Pulp & Paper Mills 1.0 - 2.5
FANS 1.0 - 2.0 Rubber Industry 1.0 - 3.0
GENERATORS 1.0 - 3.0 Steel Industry 2.0 - 3.0
PUMPS 1.0 - 2.0 Textile Industry 1.0 - 2.0
Temperature Service Factor
Ambient Temperature Service Factor St*
50º < Tº 66º 0.25
66 < Tº 74 0.5
74 < Tº 82 0.75
82 < Tº 93 1
* For relative humidity < 50%
for humidity relative > 50% consult engineers

In common, the service factor adjustment for high temperature is in addition to the service factor consideration for the driver and driven equipment. However, if high emperatures are typical for a specific application, maximum temperature consideration is incorporated into the "typical" service factor (e.g steel mill tables conveyors).

How to install
STEP 1.
  • Inspect both shafts (driven & driving) and hub bores and comfirm they are clean and no dirty particle or burrs.
  • Be sure they keys fit shafts properly.
  • Mount both hubs to the shafts securing only one hub while the other side hub should be loose for minor adjustment of spacing.
  • In case tapered being used, follow bushing manufaturer's instructions.
  • If hub is bored for and interference fit, we recommend heating the hub in water, oil bath or an even and after heating, immediately positioning it on the shaft.
  • Be careful spot heat may cuase distorition.
STEP 2.
  • Place half of the element around hubs and secure with capscrews provided.
  • The element will space the other hub. It is important to have capscrew properly tightened.
  • For placing proper capscrew, see the recommended cpascrew torques for proper installation below.
  • Now secure the other hub to the shaft.
STEP 3.
  • Mount other half of the element to hubs.
  • Tighten all capscrews to the recommended capscrew torques for proper installation below.

- Aboves shown spacer type coupling installation; the same procedure applies for the standard type coupling.

-Helpful tip!
If the capscrew holes in the element do not line up with the hubs properly due to equipment misalignment, please rotate the shafts as you can install each capscrew. For lager couplings, first install the capscrew that is positioned in the center of the half element.